Ab initio study of metal carbide hydrides in the 2.25Cr1Mo0.25V steel

Min He, Chidozie Onwudinanti, Yaoting Zheng, Xiaomei Wu, Zaoxiao Zhang (Corresponding author), Shuxia Tao (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

2.25Cr1Mo0.25V is a state-of the-art alloy used in the fabrication of modern hydrogenation reactors. Compared to the conventional 2.25Cr1Mo steel, the 2.25Cr1Mo0.25V steel exhibits a better performance, in particular higher hydrogen damage resistance. Previous experimental studies indicate that carbides in steels may be responsible for the hydrogen-induced damage. To gain a better understanding of the mechanism of such damage, it is essential to study hydrogen uptake in metal carbides. In this study, Density Functional Theory (DFT) is used to investigate the stability of chromium, molybdenum and vanadium carbides (CrxCy, MoxCy and VxCy) in the 2.25Cr1Mo0.25V steel. The stability of their corresponding interstitial hydrides was also explored. The results showed that Cr7C3, Mo2C and V6C5are the most stable carbides in their respective metal-carbon (Cr-C, Mo-C and V-C) binary systems. Specifically, V6C5shows the strongest hydrogen absorption ability because of its strong V-H and C-H ionic bonds. On the other hand, V4C3, whose presence in the alloy was established in experimental studies, is predicted to be stable as well, along with V6C5. Our findings indicate that the hydrogen absorption ability of V4C3is higher than that of V6C5. Additionally, the charge and chemical bonding analyses reveal that the stability of the metal carbide hydrides strongly depends on the electronegativity of the metal. Due to the high electronegativity of V, vanadium carbides form the strongest ionic bonds with hydrogen, compared to those of Mo and Cr. The results from this study suggest that the unique capacity of accommodating hydrogen in the vanadium carbides plays an important role in improved hydrogen damage resistance of the 2.25Cr1Mo0.25V alloy in hydrogenation reactors.

Original languageEnglish
Pages (from-to)5199-5206
Number of pages8
JournalPhysical Chemistry Chemical Physics
Volume23
Issue number9
DOIs
Publication statusPublished - 7 Mar 2021

Bibliographical note

Funding Information:
The authors would like to acknowledge the support from the National Natural Science Foundation of China (No. 11902241), the National Basic Research Program of China (No. 2015CB057602), Youth Science Foundation of Shaanxi Province (2020JQ-058), and the computation support from the Eindhoven University of Technology. Moreover, the authors are very much thankful to Mr Zulqarnain Mushtaq for formatting and proofreading. S. Tao acknowledges funding supported by the Computational Sciences for Energy Research (CSER) tenure track program of Shell and NWO, the Netherlands (project number 15CST04-2).

Publisher Copyright:
© the Owner Societies 2021.

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Fingerprint

Dive into the research topics of 'Ab initio study of metal carbide hydrides in the 2.25Cr1Mo0.25V steel'. Together they form a unique fingerprint.

Cite this